Comparative study on low-power high-performance standard-cell flip-flops
نویسندگان
چکیده
This paper explores the energy-delay space of eight widely referred flip-flops in a 0.13μm CMOS technology. The main goal has been to find the smallest set of flip-flop topologies to be included in a “high performance” flip-flop cell library covering a wide range of power-performance targets. Based on our comparison results, transmission gate-based flipflops show the best power-performance trade-off with a total delay (clock-to-output + setup time) down to 105ps. For higher performance, the pulse-triggered flip-flops are the fastest (80ps) alternatives suitable to be included in a flip-flop cell library. However, pulse-triggered flip-flops consume significantly larger power (about 2.5x) compared to other fast but fully dynamic flip-flops such as TSPC and dynamic TG-based flip-flops.
منابع مشابه
High-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop
Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...
متن کاملA new low power high reliability flip-flop robust against process variations
Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...
متن کاملPerformance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)
This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...
متن کاملComparative Study of different Flip Flop Cells for WSN Applications
Efficient power management in wireless sensor network is a critical issue as the sensor nodes are low powered devices. In a sensor node, flip flop consumes large amount of power as they make maximum number of internal transitions. Reduction in the power consumed by flip-flops shows a deep impact on the total power consumed. Hence, designing low power flip flop cells are highly important for enh...
متن کاملComparative Energy and Delay of Energy Recovery and Square Wave Clock Flip-Flops for High-Performance and Low-Power Applications
Flip-flops are essential elements of a design from both delay and energy aspects. A significant fraction of the total power in highly synchronous systems 1s dissipated over clock networks. Hence, lowpower clocking schemes are promising approaches for future desfgns. Recently, there has been published several energy recovery flip-flops that enable energy recovery from the clock network, resultin...
متن کامل